Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Lentiviral vector gene therapy and CFTR modulators show comparable effectiveness in cystic fibrosis rat airway models

Mutation-agnostic treatments such as airway gene therapy have the potential to treat any individual with cystic fibrosis (CF), irrespective of their CF transmembrane conductance regulator (CFTR) gene variants. The aim of this study was to employ two CF rat models, Phe508del and CFTR knockout to assess the comparative effectiveness of CFTR modulators and lentiviral vector-mediated gene therapy. 

Research

COPD-related modification to the airway epithelium permits intracellular residence of nontypeable haemophilus influenzae

Our findings indicate that COPD, cigarette smoke and macrolide antibiotics potentiate the susceptibility to persistent intracellular NTHi

Research

The effects of e-cigarette use on asthma severity in adult BALB/c mice

Electronic cigarettes (e-cigarettes) are often perceived to be a less harmful alternative to tobacco cigarettes. Potentially due to this perception, they are used by people with pre-existing respiratory conditions, such as asthma, who otherwise would not smoke. Despite this, there are few studies exploring the health effects of e-cigarette use on pre-existing asthma.

Research

Azithromycin mitigates human rhinovirus impact on barrier integrity and function in non-diseased airway epithelium

Azithromycin improves symptomology in various chronic airway diseases exacerbated by viral infections. However, the mechanisms underlying the apparent antiviral effects of azithromycin remain unclear.

Research

Combination of curcumin or chitosan with photodynamic therapy as an effective alternative therapy for overcoming wound infection associated with multidrug-resistant Acinetobacter baumannii

The increasing prevalence of multidrug-resistant Acinetobacter baumannii as an opportunistic pathogen in wound infections raises significant concerns due to its antibiotic resistance and biofilm-mediated antibiotic tolerance. This underscores the urgent need to explore an alternative approach to effectively managing wound infections caused by MDR A. baumannii.

Research

Lytic activity, stability, biofilm disruption capabilities and genomic characterisation of two bacteriophages active against respiratory MRSA

This study aimed to characterise bacteriophages for potential therapeutic use against Staphylococcus aureus, focusing on clinical respiratory isolates of methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains. Specifically, it sought to evaluate phage lytic activity, host range, stability, biofilm disruption capabilities, and overall safety for therapeutic use.

Research

In utero and early-life nitrate in drinking water impacts lung function of weanling rats

Consumption of nitrate in drinking water has previously been associated with a range of adverse health effects, including methemoglobinemia and potentially cancer. In animal models, it has been shown to impact respiratory structure and function, however, there is a paucity of data of the effects of in utero exposure on the respiratory health of offspring.

Research

Phage therapy to treat cystic fibrosis Burkholderia cepacia complex lung infections: perspectives and challengesge

Burkholderia cepacia complex is a cause of serious lung infections in people with cystic fibrosis, exhibiting extremely high levels of antimicrobial resistance. These infections are difficult to treat and are associated with high morbidity and mortality. 

Research

High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin-EDTA combination therapy

The global prevalence of colistin-resistant Klebsiella pneumoniae (ColRkp) facilitated by chromosomal and plasmid-mediated Ara4N or PEtN-remodeled LPS alterations has steadily increased with increased colistin usage for treating carbapenem-resistant K. pneumoniae (CRkp).

Research

An infant mouse model of influenza-driven nontypeable Haemophilus influenzae colonization and acute otitis media suitable for preclinical testing of novel therapies

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children.