Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Editorial overview: The physiology of the diseased lung

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Research

Long-term exposure of mice to 890 ppm atmospheric CO2 alters growth trajectories and elicits hyperactive behaviours in young adulthood

Atmospheric carbon dioxide (CO2) levels are currently at 418 parts per million (ppm), and by 2100 may exceed 900 ppm. The biological effects of lifetime exposure to CO2 at these levels is unknown. Previously we have shown that mouse lung function is altered by long-term exposure to 890 ppm CO2. Here, we assess the broader systemic physiological responses to this exposure.

Research

Biodiesel exhaust: The need for a systematic approach to health effects research

Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol...

Research

Respiratory toxicology of e-cigarettes: effect of vapours on lung function and inflammation

Electronic cigarettes (ECs) have been rapidly gaining ground on conventional cigarettes due to their efficiency in ceasing or reducing tobacco consumption,...

Research

Development of a screening tool to identify safer biodiesels

Alexander Anthony Larcombe Kicic BScEnv (Hons) PhD BSc (Hons) PhD Honorary Research Fellow Rothwell Family Fellow; Head, Airway Epithelial Research

News & Events

Annual Community Lecture: You Are What You Breathe

Join us for our Annual Community Lecture entitled "You Are What You Breathe" with Professor Stephen Holgate.

Research

House dust mite induced lung inflammation does not alter circulating vitamin D levels

We hypothesized that allergic inflammation decreases the level of circulating 25(OH)D and tested this using a mice model of house dust mite (HDM) induced...

Research

Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. 

Research

Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma

In this study, we aimed to use microRNAs-which are critical regulators of signaling cascades-to identify so far uncharacterized asthma pathogenesis pathways

Research

Foetal growth restriction in mice modifies postnatal airway responsiveness in an age and sex-dependent manner

Our data demonstrate changes in airway responsiveness as a result of intrauterine growth restriction that could influence susceptibility to asthma development