Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

In utero and early-life nitrate in drinking water impacts lung function of weanling rats

Consumption of nitrate in drinking water has previously been associated with a range of adverse health effects, including methemoglobinemia and potentially cancer. In animal models, it has been shown to impact respiratory structure and function, however, there is a paucity of data of the effects of in utero exposure on the respiratory health of offspring.

Research

Comment on Karthikeyan et al. Concordance between In Vitro and In Vivo Relative Toxic Potencies of Diesel Exhaust Particles from Different Biodiesel Blends. Toxics 2024, 12, 290

Dr Katherine Alexander Landwehr Larcombe BSc(Hons) BScEnv (Hons) PhD Senior Research Officer Honorary Research Fellow Katherine.landwehr@

Research

Inclusion of genital, sexual, and gender diversity in human reproductive teaching: impact on student experience and recommendations for tertiary educators

Western societal norms have long been constrained by binary and exclusionary perspectives on matters such as infertility, contraception, sexual health, sexuality, and gender. These viewpoints have shaped research and knowledge frameworks for decades and led to an inaccurate and incomplete reproductive biology curriculum. To combat these deficiencies in reproductive systems-related education, our teaching team undertook a gradual transformation of unit content from 2018 to 2023, aiming to better reflect real diversity in human reproductive biology.

Research

Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory?

From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. 

Research

Feto-placental vascular structure and in silico haemodynamics: Of mice, rats, and human

The complex arborization of the feto-placental vasculature is crucial for optimal fetal nutrition, waste exchange and ultimately, development. Ethical and experimental limitations constrain research into the human placenta, hence experimental animal models such as mice and rats, are crucial to understand placental function. It is unclear how well the mouse and rat feto-placental vascular structure emulates human. Moreover, the implications of differences in vascular structure, especially in arborization, for placental function remain unclear. 

Research

The Safety of Alcohol Pharmacotherapies in Pregnancy: A Scoping Review of Human and Animal Research

Alcohol pharmacotherapies pose unknown teratogenic risks in pregnancy and are therefore recommended to be avoided. This limits treatment options for pregnant individuals with alcohol use disorders (AUD). The information on the safety of these medications during pregnancy is uncertain, prompting a scoping review. The objective of this review was to investigate available information on the safety of alcohol pharmacotherapies in pregnancy.

Research

Exposure to biodiesel exhaust is less harmful than exposure to mineral diesel exhaust on blood-brain barrier integrity in a murine model

Emerging data suggest that air pollution is a persistent source of neuroinflammation, reactive oxygen species, and neuropathology that contributes to central nervous system disorders. Previous research using animal models has shown that exposure to diesel exhaust causes considerable disruption of the blood-brain barrier, leading to marked neuroinflammation. 

Research

Alcohol pharmacotherapy dispensing trends in Australia between 2006 and 2023

This study aimed to investigate acamprosate and naltrexone dispensing patterns in Australia.

Research

Hidden in plain sight: how vaping manufacturers exploit legislative loopholes

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Research

Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood.